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1 Abstract

Creating computational biology models applicable to industry is much more
difficult than it appears. There is a major gap between a model that looks
good on paper and a model that performs well in the drug discovery process.
We are trying to shrink this gap by introducing the Evaluation Framework For
predicting Efficiency of Cancer Treatment (EFFECT) benchmark suite based
on the DepMap and GDSC data sets to facilitate the creation of well-applicable
machine learning models capable of predicting gene essentiality and/or drug
sensitivity on in vitro cancer cell lines.

We show that standard evaluation metrics like Pearson correlation are mis-
leading due to inherent biases in the data. Thus, to assess the performance
of models properly, we propose the use of cell line/perturbation exclusive data
splits, perturbation-wise evaluation, and the application of our Bias Detector
framework, which can identify model predictions not explicable by data bias
alone.

Testing the EFFECT suite on a few popular machine learning (ML) models
showed that while library-standard non-linear models have measurable perfor-
mance in splits representing precision medicine and target identification tasks,
the actual corrected correlations are rather low, showing that even simple knock-
out (KO)/drug sensitivity prediction is a yet unsolved task.

For this reason, we aim our proposed framework to be a unified test and
evaluation pipeline for ML models predicting cancer sensitivity data, facilitating
unbiased benchmarking to support teams to improve on the state of the art.
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2 Introduction

Machine learning models are frequently used to predict in vitro drug sensitivity
and gene essentiality of cancer cell lines (Adam et al. [2020; Dempster et al.
2020). Interpretation of these models can help to identify sensitivity and re-
sistance biomarkers for different anti-cancer compounds (Dempster et al. [2020)
and they promise applicability on in vivo models (Kurilov et al. |2020) and for
patient drug response predictions (Jia et al.[2021; Wang et al.|2022). To identify
well-performing ML models, correct evaluation metrics and benchmarking are
crucial, especially as ML models can learn frequently present data biases (Eid
et al. |2021)), which makes standard metrics unreliable and confounds model
interpretation.

In this study, we focused on predictions made on in vitro data as in vitro
cancer cell line sensitivity data is much more abundant than in vivo and patient
data. In most cases, more complex in vivo predictions also incorporate in vitro
data — with all its corresponding biases. CCLE (Ghandi et al. |2019) and Cell
Model Passports (Meer et al. 2019) created extensive multi-omics datasets of
>1,000 cancer cell lines, where baseline (unperturbed) gene expression and ge-
nomic status of cancer cell lines are available. Other initiatives like GDSC (Iorio
et al. [2016), CTRP (Seashore-Ludlow et al. |2015), and PRISM (Corsello et al.
2020)) created datasets where drug sensitivity (drug response curve IC50 or area-
under-curve (AUC), or their z-score normalized version) is measured in these
cancer cell lines for 100s/1,000s of compounds. Complementary, genome-wide
gene essentiality measurements are available as the DepMap dataset (Tsher-
niak et al.[2017). In these experiments, a genome-wide, pooled CRISPR screen
was performed in a large panel of cancer cell lines, and gene knock-out-induced
viability changes were measured (named gene effect).

What prompted our investigation is the emergence of models simultaneously
trained for multiple perturbations (Firoozbakht et al.[2022; Menden et al. [2013;
Costello et al. 2014} Yang et al. [2018; Szalai et al. [2019; Manica et al. 2019}
Jiang et al. [2022). Typical machine learning models are trained separately for
each perturbation (drug or gene knock-out), using the baseline multi-omics pa-
rameters of the cell lines as features (Firoozbakht et al. 2022; Iorio et al. [2016;
Dempster et al. |2020). In contrast, multi-perturbation methods use the multi-
omics parameters of the cell lines together with perturbation-specific features to
predict sensitivity for multiple, different perturbations with one model, opening
new possibilities like predicting sensitivity for new perturbations unseen during
the model training. Despite these rich possibilities, there is still a gap between
how high accuracy scores these models can claim, and their lack of adoption
in the industry. We argue that this is at least partly due to how far common
methods to calculate accuracy are from what happens in actual downstream
applications. For example, when the investigation into a new target begins,
researchers are interested in the cell lines’ sensitivity to the target of interest
before they start synthesizing a compound and they have any training data
available for that specific perturbation, so no metric measured on a simple ran-
dom train/test split will give us the correct picture for this application. We
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also uncovered additional pitfalls by analyzing the performance of ML models
with different input features and complexity on the sensitivity prediction prob-
lem. We show that even on an applicable train/test split, standard metrics, like
Pearson correlation cannot differentiate between models, as simple models with
uninformative features have similar performance to ones using biologically in-
formative features. We identified that cell line and perturbation-specific biases
mislead model performance metrics and developed a statistical framework to
correct them.

While our framework is informed by our challenges benchmarking cross-
perturbation models, we aim for it to be applicable in any type of cancer sen-
sitivity prediction setup. Our goal is to help the field move towards mod-
els with better practical use. To further support that goal, we also release
our datasets to serve as uniformized benchmark data for further studies at
https://benchmark.turbine.ai.

3 Results

3.1 Prediction and evaluation setup for multimodal ma-
chine learning models

To test the benchmarks, we have also built a simple cross-perturbation ML
framework, where a single model learned the sensitivity of different cell lines
for different perturbations. We have created two separate test schemes: one
predicting drug sensitivities, and another predicting gene dependencies. For
the current article, we did not mix these two datasets, so separate models were
trained for drugs and gene dependencies.

To perform the training, the models require both cell line and perturbation-
specific features (Figure 1A). We used four different feature setups: a simple
cell line identity (one-hot encoding), gene expression, genetic mutations, and
the union of all features (Methods) as cell line features. For drug perturbation
features, we used drug identity, canonical target, drug target affinity, chemical
fingerprint, and again, the union of these features (Methods). In the case of gene
perturbations (KOs), we used the gene identity, node2vec-based network topol-
ogy embedding, prot2vec-based sequence information, Gene Ontology terms of
the KO’d gene, and the union of all these features (Methods) as input features.

For each sample (cell line — perturbation pair), the corresponding cell line
and perturbation features were concatenated, and the final feature matrix was
used to predict drug sensitivity (IC50 or z-score) from GDSC (Torio et al. 2016))
or gene essentiality (gene effect) from DepMap (Meyers et al. 2017; Behan et
al. 2019; Dempster et al. |2019)), using ML models with different complexity;
linear regression (LR), Random Forest regression (RF), or Multilayer Percep-
tron regression (MLP). We used separate models for drug sensitivity and gene
essentiality predictions.

As highlighted previously, one of the most important considerations when
setting up a model is to select the right train/test splitting regimen for the
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downstream application. Just holding out a random set of genes (or drugs) and
cell lines from the train set already yields three different test sets, each much
more representative of a given downstream application than a simple random
split (Figure 1B). The CEX (cell-exclusive test) slice maps to an application
where one wants to predict the performance of a known drug in new models,
such as in drug repurposing or precision medicine.

The DEX or GEX (drug or gene-exclusive, depending on the type of pertur-
bation, together also referred to as perturbation-exclusive, PEX) slice maps to
target discovery applications — when we would like to assess the effect of a new
drug on a set of established in vitro model cell lines. For testing purposes, we did
include a random train/test split as well (RND). Notably, we could not think of
practical downstream applications for the easiest (RND) and the hardest (AEX
- all exclusive) splits, so we would advise against using these to generate the
primary metrics in benchmarking scenarios. To monitor the variability of pre-
diction performance, we created 3 sets of random train-RND-CEX-PEX-AEX
splits (Methods).

To show which metrics are the most informative, we used common metrics
for the evaluation of model performance (Figure 1C). Mean-squared error,
Pearson, and Spearman’s correlation between the full prediction and truth vec-
tors were used as global metrics. We also calculated these metrics for each
cell line and each perturbation separately and called these metrics cell line and
perturbation-wise metrics.

The different ML model types, featurization, and test sets allowed us to de-
fine control models that were expected to perform badly before the experiments.
For example, as modeling different perturbations in cell lines requires learning
interactions between cell line and perturbation features, we expected that lin-
ear models would not perform well in these setups and were used as control
experiments. Similarly, identity (one-hot encoding) features are not expected
to perform well in some of the test setups, namely identity cell line features
in CEX and AEX setup and identity perturbation features in PEX and AEX
setup, so these models are also control experiments.

This experiment setup enabled us to get information about a wide range of
model types, train/test splits, and evaluation metrics, enabling us to analyze
model performance in an unbiased way.

3.2 Biases of sensitivity data

Machine learning models that use high-dimensional data can easily learn trivial
biases/confounding factors of datasets. Learning these biases can increase ap-
parent model performance, however, it can hinder model generalization and lead
to false interpretation and biological translation of results. We identified that
most of the biases are related to the general sensitivity of cell lines to perturba-
tions and the general effectiveness of perturbations and developed a statistical
framework to overcome this problem.

Different drugs have different mean (median) IC50 values (Figure 2A). This
difference is mainly attributable to the chemical properties and target profile of
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Figure 1: General framework for multimodal machine learning prediction of sensi-
tivity. (A) Model training setup: cell line and perturbation-specific features (left side)
are concatenated for each sample (unique cell line — perturbation pair) and are used to
predict target sensitivity variable (gene effect or drug IC50). (B) Composition of train-
ing and test sets. (C) Evaluation metrics: global metrics are calculated for the whole
predicted dataset (left) while per-cell line/per-perturbation metrics are calculated for
each of the respective subsets of predictions.
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drug molecules. While mean IC50 is important from a chemical feasibility point
of view, it is less important and even can be misleading when assessing biological
selectivity. For example, the cell line CORLS88 has a lower IC50 for Bortezomib
than for Cyclophosphamide (Figure 2A), but its Cyclophosphamide IC50 is
in the lower range of the whole Cyclophosphamide IC50 distribution, making
its relative sensitivity higher for Cyclophosphamide than for Bortezomib. This
drug bias can also confound the evaluation of prediction models: a model only
learning the mean IC50 of drugs (with some random noise), can already show
strong prediction performance using standard correlation metrics (Figure 2B,
Pearson correlation r = 0.96).

To overcome this problem, relative sensitivity (z-score) is a frequently used
target metric in drug sensitivity prediction. Z-score is calculated by drug-wise
normalization of log(IC50) values, thus removing the confounding effect of mean
drug IC50. However, cell lines also have intrinsic biases, like general sensitivity
(Geeleher et al. |2016]), meaning that some cell lines are sensitive (MV411 cell
line), while others are resistant (ASPC1 cell line) to all investigated drugs coun-
tering the effect of z-score normalization (Figure 2C). General sensitivity can
be a consequence of drug efflux transporters but can also arise from different
division times of cell lines (Hafner et al. |2016]). Importantly, general sensitivity
is associated with tissue type (Figure 2D), thus it can be learned by machine
learning models (e.g., from gene expression features) and can confound model
evaluation just like the previously mentioned mean drug IC50 bias. Similarly,
perturbation biases can also be learned from biologically inspired features.

While using per-cell line and per-perturbation metrics (Figure 1C) can
partially overcome these problems, these evaluations remove only one of these
biases at once (per-cell line evaluation removes cell bias, and per-perturbation
evaluation removes perturbation bias). To overcome this problem, we created a
statistical framework, named Bias Detector (BD) to systematically remove both
cell line and perturbation-specific confounding factors, and evaluate ML model
performance in a more unbiased way. We calculated cell line and perturbation
biases for the whole GDSC or DepMap dataset (Methods). Then, we calculated
partial correlation coefficients between predicted and true values, using the pre-
calculated cell line and perturbation biases as covariates (Figure 2E). Our final
reported metrics are the partial correlation coefficients and the fraction of per-
turbations (or cell lines) where the partial correlation of the predicted and true
values is significant. We argue that this BD framework can identify models that
learn specific and biologically interesting sensitivity patterns, not only trivial
cell line or perturbation biases.

3.3 Predicting gene essentialities

We first subjected models trained to predict gene essentiality to our proposed
evaluation framework. This showed that using global correlation metrics, even
the simplest model (linear regression trained using one-hot encoded feature set)
has an astoundingly good performance (Pearson r = 0.8) not only in the RND
split but also in the cell-exclusive (CEX) split, despite one-hot encoded cell
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Figure 2: Biases of sensitivity data and Bias Detector (A) Mean logIC50 as con-
founding factor (B) Effect of mean logIC50 bias on evaluation metric (C) General
sensitivity of cell lines as confounding factor (D) Tissue type distribution of general
sensitivity (only 6 most frequent tissue types are shown) (E) Bias detection frame-
work: Two models (Model 1, which learned only biases with some error, and Model2,
which learned some additional information) have similar performance in predicting
sensitivity based on the raw Pearson correlation as a metric (middle, Pearson corre-
lations 0.92 and 0.96, respectively, color code represents 3 different drugs of this toy
example). Cell line and perturbation-specific biases are calculated from truth data
(left). A linear model is fitted for truth and predicted values, and Pearson correlation
is calculated between residuals (partial correlation coefficient, right). Bias detector
identifies the increased performance of Model2 (partial correlation coefficients and p
values: -0.11, 0.29, and 0.37, 0.0002 for Modell and Model2, respectively).
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features not being expected to convey any generalizable message (Figure 3A
and 3B). This is in strong contrast to correlation scores calculated per gene,
where few genes score above 0.3 in any setup except the MLP model on the
random split (Figure 3D) in line with prior expectations. Furthermore, in the
CEX split, all linear regression models, and even some of the more complex
setups, lost most of their predictive performance. Only models trained on the
most information-rich feature sets (Figure 3E) were predictive in this harder,
but more practical generalization scenario. These observations agree with the
hypothesis that good global correlations could be reached by only learning the
average sensitivity of cell lines to different perturbations and nothing else.

The gene-exclusive (GEX) split fared significantly worse in terms of global
correlation (Figures 3C and 3F). Here, even global correlation can somewhat
differentiate between feature sets suitable or unsuitable for generalization. We
also saw (like with the other two split types) that the per-gene correlations
are greatly reduced compared to the global values. This suggests that models
can predict the general essentiality of unseen genes, but they are unable to give
information about which cell lines will be more sensitive to a given perturbation.
The per-cell line correlations for the GEX set are also high, further proving this
hypothesis (Supplementary Figure 1).

Applying the Bias Detector (BD) workflow (partial correlation between model
predictions and ground truth, see Figure 2E and Methods) to assess the ef-
fect of learning general sensitivity on the model performance showed that those
models that demonstrated some positive predictive power per gene (i.e., beyond
predicting the mean difference between the effect of individual genes) were pre-
dicting more than general sensitivity for some genes (Figures 3G to 3L).
Importantly, this was also only possible if information-rich feature sets were
used for model training. Without these measures, the user of a system wouldn’t
have been able to understand which genes’ predictions are reliable enough to
base their in vitro experiments on.

3.4 Predicting drug sensitivity

In contrast to predicting gene effect, all three models predict drug sensitivity
— both IC50 (Figure 4A) and z-score (Supplementary Figure 2) — well in the
RND split as indicated by the high Pearson correlation coefficients per per-
turbation. Interestingly, linear regression gave a very consistent performance,
irrespective of the cell and perturbation features used (Figure 4A and Sup-
plementary Figures 3 and 4). As expected, none of these three methods could
predict drug sensitivity in the CEX split when trained only on the OHE (one-hot
encoded) cell features (Figure 4B and Supplementary Figure 3). Surprisingly,
however, all methods achieve high per-perturbation scores in the DEX splits,
even when trained on OHE perturbation features, which are expected to be non-
generalizable (Figure 4C and Supplementary Figure 2). This suggests that the
models likely learned some trivial feature of the dataset, e.g., the general sen-
sitivity of cell lines — which in the DEX split were all part of the training set
also — to any perturbations. This cross-contamination of the measure by bias
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Figure 3: Model performance of predicting DepMap gene effect. (A-C) Raw Pearson
correlation of model predictions to ground truth pooled from three different RND (A),
CEX (B), and GEX (C) splits. (D-F) distribution of Pearson correlations calculated
separately for each perturbed gene for the three splits: RND (D), CEX (E), and
GEX (F). (G-I) Distribution of per perturbation partial correlations as reported by
BD for the three different splits. RND (G), CEX (H), DEX (I). (J-L) Fraction of
perturbations with significant positive partial correlations as detected by BD; mean
and 95% confidence interval of three different RND (J), CEX (K), and DEX (L) splits.
Different colors indicate different cell line + perturbation feature set combinations
(legend). The first part signifies cell features, the second perturbation features. Red
plus sign indicates significant difference (p <= 0.05) compared to LR trained on all
cell and perturbation features (meaning improving the algorithm was significant), red
asterisk indicates significant difference (p <= 0.05) compared to the respective method
trained on one-hot encoded cell and perturbation features (meaning improving the data
was significant) (see Methods).
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factors orthogonal to the test feature is exactly why we needed a separate Bias
Detector.

To evaluate whether such confounding factors could explain the unexpectedly
good performance, we used the Bias Detector to calculate partial correlation co-
efficients and the fraction of perturbations that are predicted with significantly
good partial correlation to ground truth (adjusted p < 0.05, see Figure 2E and
Methods) just like before. This showed that linear models largely just learned
the bias that exists in the drug sensitivity dataset as very few perturbations
were found to be significantly better than the bias correlation by the BD Fig-
ures 4D to 4I). This also explains the consistent performance of the linear
regression models irrespective of the feature sets used for training (Figures 4A
and 4C). Non-linear models, random forest in particular, were able to provide
predictions beyond the data bias; in the RND split, the number of perturbations
predicted better than data bias largely co-varies with the raw model performance
(Figures 4A and 4G). This co-variance can be observed to some extent also
for the CEX and DEX splits. Most importantly, in the DEX split, we detected a
substantial drop in the fraction of over-bias predicted perturbations when OHE
perturbations were used to train the non-linear models (especially prominent
when predicting z-scores, Figure 41 and Supplementary Figure 2). This in-
dicates that even the non-linear models learned mainly trivial associations of
drug sensitivity without proper perturbation features. Taken together, evaluat-
ing our models trained to predict drug sensitivity revealed that, similarly to the
models trained to predict gene effect, a) linear models may have promising raw
performance metrics, yet have limited capacity to learn beyond the bias existing
in the data and b) non-linear models, even when having poorer raw metrics than
LR, can learn non-trivial associations when trained on generalizable features.

Based on the substantial differences between the raw and Bias Detector-
based prediction performances, we were interested in which drugs can be bet-
ter predicted using raw metrics (per-perturbation Pearson correlation) and BD
metrics (partial correlation). We performed pathway enrichment using the drug
target—prediction performance (correlation or partial correlation) vectors. Our
results show (Supplementary Table 1) that general cytotoxic drugs (targeting
pathways like Cell cycle, G1 Phase, and caspase activation) are dominating the
top results for raw correlations while targeted therapies (targeting pathways
including RAF activation and ERBB signaling) are showing the best partial
correlations. These results suggest that for general cytotoxic drugs, predict-
ing drug-specific effects is harder, while in the case of targeted therapies, lower
raw correlations can be achieved, also underlying the importance of the BD
framework.

4 Discussion
In this study, we presented considerations to create more effective benchmarks.

We showed that data biases can significantly influence model performance and
may render the distinction between models using uninformative and informative
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Figure 4: Model performance of predicting IC50 drug sensitivity. (A-C) distribution
of Pearson correlations calculated separately for each perturbed gene for the three
splits: RND (A), CEX (B), and DEX (C). (D-F) Distribution of per perturbation
partial correlations as reported by BD for the three different splits. RND (D), CEX
(E), DEX (F). (G-I) Fraction of perturbations with significant positive partial correla-
tions as detected by BD; mean and 95% confidence interval of three different RND (G),
CEX (H) and DEX (I) splits. Different colors indicate different cell line + perturbation
feature set combinations (legend). The first abbreviation signifies cell features, the sec-
ond perturbation features. Red plus sign indicates significant difference (p <= 0.05)
compared to LR trained on all cell and perturbation features (meaning improving the
algorithm was significant), red asterisk indicates significant difference (p <= 0.05)
compared to the respective method trained on one-hot encoded cell and perturbation
features (meaning improving the data was significant) (see Methods).
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features difficult. We presented a statistical framework named Bias Detector,
which accounts for the effects of cell line and perturbation biases on model
performance and can help find the best-performing models.

We showed the importance of choosing the right train/test split to use for
benchmarking to make sure the results translate to the downstream applications.
In the case of random splits, every model trained on any feature combination
reached a comparable, good global correlation with ground truth data, which
would suggest that the prediction of in vitro cancer sensitivity is a simple task.
Yet, when analyzing the model performance on individual perturbations, model
performance dropped quite substantially, in certain cases — e.g., linear regres-
sion on predicting the effect of CRISPR KO perturbations — close to a mean of
zero correlation. This indicates that ML models trained on a large corpus of
perturbations may indeed only learn the mean differences between the effect of
those perturbations while failing to sort the samples per perturbation correctly.
Linear regression is a prime example of such a bad-performing model class in
predicting the CRISPR, KO effect; interestingly, linear models trained on any
feature combination performed well in predicting drug perturbation effects —
even superior to their non-linear counterparts. However, when subjected to the
Bias Detector, linear models turned out to be largely incapable of providing bet-
ter predictions than what the data bias alone allows for — which also explains
the feature insensitivity of linear models. Taken together, these observations on
the commonly accepted random train/test splits substantiate the better evalu-
ation of ML models trained on large corpora of heavily correlated data such as
cancer sensitivity.

Cell exclusive splits represent a therapeutically more relevant scenario, where
the best performing existing drug (or drug target) needs to be selected for a
given sample representing a patient group (with the strong caveat that actual
patient cells are quite unlike any in vitro cancer cell line). Again, using global
evaluation metrics, models had similar performance. In a CEX setup, the gen-
eral effectiveness of a perturbation can be easily learned from the train set, and
as general perturbation effectiveness dominates the sensitivity data (Figure
2A), this model- and feature-independent performance is not surprising. In the
case of perturbation-wise evaluation, we saw an increased performance of the
Random Forest model trained on cell features containing biological information
(gene expression, in particular), compared to linear and MLP models. Interest-
ingly, mutation features were not as effective cell line features as transcriptomics,
which agrees with the results of previous studies (Dempster et al. |2020; Iorio
et al.|2016)). Using perturbation-wise evaluation, the MLP model had a similar,
or even weaker performance than the baseline linear model. Nevertheless, the
Bias Detector did reveal that MLP was able to predict better than data biases
for more perturbations (and cell lines) than linear models, also highlighting the
importance of bias-independent evaluation metrics. Based on our testing, the
CEX scenario, while being a stricter test than the pure random split, is still the
easiest of the exclusive splits.

Gene/drug exclusive splits represent another application, target identifica-
tion, that is, predicting sensitivities for a new drug candidate on existing cells.
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In our opinion, this setup comes closest to the real-life application of an ML
model predicting in vitro cancer cell sensitivities. In this test, we already saw
differences even in the global metrics: models using biologically informative per-
turbation features had in general better performance than the ones with one-hot
encoded features. In the DEX drug sensitivity predictions, the per perturba-
tion scores were also reasonably good (even in the case of a linear model and
uninformative features) suggesting an orthogonal, confounding bias creeping in.
We assumed that this confounding bias was the general level of drug sensitivity
((Geeleher et al. [2016), Figures 2C and 2D), which was already shown to
have a major contribution to apparent model performance. This observation
was what originally prompted the development of the Bias Detector tool, which
indeed successfully revealed that only non-linear models, using informative fea-
tures can learn additional information. These effects were less pronounced in
the case of gene essentiality prediction, as the normalization methods used by
DepMap mostly remove these cell line-specific general effects (Dempster et al.
2021)).

As an aside, analyzing the best-performing features showed that GO encod-
ing was the best-performing feature for gene effect, and drug target encoding
for drug sensitivity prediction.

For completeness, we also performed experiments in an all-exclusive (AEX)
setup, where both the cell lines and the perturbations were new (out of dis-
tribution) for the models. In the case of global metrics, we observed similar
behavior to the GEX/DEX setup, regarding per-node and per-cell metrics, and
after Bias Detector, none of the models showed predictive performance (Sup-
plementary Figure 1). This exemplifies quite well how hard actual clinical drug
discovery is when treating new patients with new drugsﬂ

While this first version of the EFFECT suite only uses continuous metrics,
it should be noted that the same sensitivity to bias applies to standard clas-
sification metrics like accuracy, F1 score, and AUROC. The same tweaks we
recommend to correlations could also be applied to these other scores to yield
more translatable results (mean per-node scoring, performance over bias).

A natural extension of these cross-perturbation ML models is predicting
sensitivity for combinatorial perturbations (Menden et al. [2019)), including the
application of whole cell models (Yuan et al. 2021} Nilsson et al. [2022)). The
biases identified in our study are possibly also present in these scenarios, and
the applied benchmarking and bias removal tools can be potentially extended
for them.

Combinatorial prediction setups naturally have more sources of bias, which
highlights something that is fairly trivial, but still important to mention: while
any known bias terms can be added to the Bias Detector’s regression logic so
that it can account for those, it does not protect the user against unknown
biases which are not in the expressed logic. In fact, what is meaningful data

IThis is more just an example than an actual well-mapping downstream application since
there is always some cell line and mouse data available on the drug of interest when starting
clinical trials. However, a human patient is such a different environment, that it may not be
a big stretch to say that it’s similar to a no-drug-data-available scenario.
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and what is bias depends on the actual application. For example, whether the
indication (the tissue type of the originating cell line) is a bias depends on the
phase of drug discovery the model is being used in. Early on, when trying to
find a target indication for a drug of interest, the tissue type is core information.
Later, if one is already using a model to recruit for a clinical trial with a pre-set
indication, the same tissue type becomes a bias to control for.

We believe that our Bias Detector framework identifies the most impor-
tant data biases of sensitivity prediction in a scenario where it would be used
downstream for finding target indications, but it can be extended to additional
confounding factors/data biases.

In summary, we created an extensive benchmark for gene effect and drug
sensitivity prediction ML models. We showed the importance of different test
splits and evaluation metrics and developed the Bias Detector, a statistical
framework to identify data bias-independent, biologically interesting predictive
models. Our general recommendation is therefore threefold: 1.) choose the
train/test split wisely for the application, 2.) use local, perturbation- or cell-
wise metrics instead of global metrics, and 3.) use statistical tools, like our
bias detector Bias Detector reduce the effects of data biases in the performance
evaluation.

To make these considerations easy to apply, we plan to make the pre-
sented benchmark datasets and methods available to the research community
at https://benchmark.turbine.ai and maintain and extend them in the future
hoping that they can be used for a more unified evaluation of ML models in
the field. The very next version we plan to release is one where the drug and
gene test sets are harmonized so that models trained on both drug and gene
dependency data can be evaluated as well.

5 Methods

5.1 Dataset composition

We used GDSC2 (In(IC50) and z-score) data (Iorio et al. 2016) as the base
drug sensitivity, and DepMap CRISPR data (Meyers et al. 2017) as the base
gene essentiality dataset. In the case of the gene essentiality dataset, we have
downsampled the dataset since the large number of non-essential genes would
hinder model fits. We labeled each cell line — gene KO pair as DEAD if the
gene effect score was below —0.5. We assigned genes to 20 evenly spaced bins
according to the ratio of DEAD cell lines for the given gene’s KO. After this
step, we randomly selected 200 genes at most from each bin. Bins with less than
200 genes were fully included in the dataset. For the DepMap CRISPR data,
20% of available genes and 20% of available cell lines were split off to form the
exclusive test sets. The test cell lines combined with train genes were used for
the GEX set, while test cell lines combined with train genes were used for the
CEX set. The RND split was taken from the rest of the data points. To ensure
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the reproducibility of results the random sampling of test genes, cell lines, and
samples was repeated three times.

5.2 Generating input features
5.2.1 Cell line features

We used gene expression (log-transformed TPM values) and mutation (binary
indicator matrix) data from DepMap as descriptive cell line features. To reduce
dimensionality, Principal Components Analysis (PCA) was performed, and the
first 950 and 671 components, respectively, explaining 90% of the total variance
were kept as features.

5.2.2 Drug features

The following features were assembled to describe drug features for the model
training: a) One-hot encoding of drug identity, b) Target encoding, where the
GDSC annotated target gene(s) or structures (etc. microtubules, chromatin)
were encoded in a ternary indicator matrix (1 for inhibitory, -1 for activator
role, 0 — for no effect on target), c) Target affinity, similar to target encoding
but the matrix values are the log-transformed affinity values of the compound to
its targets as reported in BindingDB (Gilson et al.|2016]), and d) PubChem fin-
gerprints based on SMILES in a one-hot encoded format, reduced by PCA from
1k to 75 features retaining 90% of the variance. Based on feature availability,
141 drugs from GDSC2 were kept for training and test purposes.

5.2.3 KO-specific perturbation features

We used the following features to represent the target (KO’d) node in CRISPR
perturbation experiments: a) One-hot encoding of the node identity. b) Molec-
ular function and biological process Gene Ontology (The Gene Ontology Con-
sortium [2019)) terms of the target node (GO features were one-hot encoded and
dimension reduced by PCA). ¢) node2vec encoding of the target node. We used
the OmniPath (Tiirei et al. 2021 Tiirei et al. [2016) network and the node2vec
algorithm (Grover and Leskovec 2016)) to create signaling network-based em-
bedding of the target node. And d) Protein sequence embeddings from UniProt
(Coudert et al. |2023]).

5.3 Machine learning model training

The training inputs were given as concatenated feature vectors of various lengths
depending on the number of included feature types. We applied three types of
models to these datasets: ridge regression, random forest regression, and multi-
layer perceptron.

For the implementation of the ridge regression models, we used the Scikit-
learn software package (Pedregosa et al. |2011). Ridge regression is a linear
model that is regularized through the L2-norm of the model parameters. We
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chose ridge regression as it is a widely used model for supervised prediction
of omics datasets and from a theoretical perspective it should handle well the
large number of multicollinear features of our datasets (Wieringen [2015). We
optimized the model through the minimization of the mean-squared error (MSE)
loss between the cell sensitivity labels and the model predictions. We used
the train split of the dataset to do a hyperparameter selection process for the
strength of the regularization parameter based on cross-validation. Finally, we
applied the selected model for the required test splits.

As another benchmark algorithm, we used the “randomforest” model from
the Scikit-learn software package. Random forest is a frequently used model
type for life science applications, and we used it as a black box solution without
the need for parameter optimization (Touw et al. 2013). We optimized the
model through the minimization of the mean-squared error (MSE) loss between
the cell sensitivity labels and the model predictions.

In our experiments, a standard multi-layer perceptron (MLP) with rectified-
linear unit (ReLU) activation was chosen as a strong general baseline architec-
ture, to model the underlying complex, non-linear relationship between pertur-
bations and cell line responses. After the processing of multiple fully connected
layers, a final output layer consisting of only a single neuron with linear acti-
vation returns the prediction value for the regression task. The optimization
criterion was to MSE loss between the ground truth label and prediction. To
avoid overfitting, dropout was applied on the hidden layer neurons, and the
best-performing model was selected from the epoch of lowest MSE loss on the
random split of each feature collection setup. The optimization of the net-
work parameters was done via back-propagation, using Adam optimizer with
learning rate = 1073 and batch size = 256, epochs = 20. The optimal architec-
ture with depth = 3, hidden neuron count per layer = 128 and dropout rate =
0.2 was selected after an extensive hyperparameter search. The source code im-
plementation is provided in the GitHub repository: |https://github.com/turbine-
ai/DrugKOPred-benchmark-bias.

5.4 Pathway enrichment

We calculated Reactome (Jassal et al. |2020) pathway enrichment on the tar-
get—correlation coeflicient vectors (either raw or partial correlations, perturbation-
wise calculation) using the viper (Alvarez et al. [2016)) function of decoupleR
(Badia-i-Mompel et al.[2022)). Correlation values were at first aggregated target-
wise.

5.5 Model performance evaluation, Bias Detector, and
statistical analysis

For each prediction experiment (predications on a specific test set), we calcu-

lated global, perturbation, and cell line-wise metrics. For global metrics, we

calculated root-mean-squared error (RMSE), Pearson correlation, and Spear-
man’s rank correlation between the whole prediction and truth vectors (all cell
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lines and perturbations). For perturbation-wise and cell-wise evaluation, we
calculated the same metrics for each perturbation/cell line separately.

For the Bias Detector framework, we calculated cell line and perturba-
tion bias as a first step. For bias calculation, we fitted a sensitivity., ~
cell, + perturbation, linear model, where cell and perturbation factors rep-
resent the cell lines and perturbations, respectively. We used the coefficients of
this linear model as biases. To evaluate the prediction performance of a model,
we fitted two linear models: y_pred., ~ cell_bias. + perturbation_bias, and
y_truee, ~ cell_bias. + perturbation_bias,. The Bias Detector calculated the
Pearson correlation and p-value between the residuals of these two models.

The significance of differences in model performance metrics was evaluated
statistically by non-parametric Kruskal — Wallis (KW) tests followed by pair-
wise Mann—Whitney U tests as the metrics themselves are not expected to be
normally distributed due to their limited range (-1 to 1 for correlation metrics,
0-1 for fraction of perturbations/cells that are predicted better than the bias
model). The testing was done on a per split basis, first evaluating if there was a
significant difference (alpha = 0.05) in the metrics of all the models trained on
any of the analyzed feature combinations by KW test followed by comparing all
models by pairwise U tests to the corresponding linear regression model trained
on the full combination of descriptive features (ALL+ALL feature set). Further-
more, the effect of the feature set on the model metrics was evaluated similarly,
on a per model per split basis: KW test was used to determine the significant
difference among the same type models trained on different feature sets and if
this test was significant (alpha = 0.05), the models were compared by pairwise
U tests to the corresponding model trained on the one-hot encoded feature set.
P-values of the U tests were adjusted for multiple testing by the Bonferroni-
Hochberg method and significance was reported at (corrected) alpha = 0.05
level.
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Supplementary Figure 1: Model performance of predicting DepMap gene effect.
Used evaluation metrics are labeled on the y-axis, used ML model is labeled on the
x-axis, results are grouped based on splits (RND, CEX, GEX, and AEX columns).
Used cell line and perturbation feature pairs are color-coded (legend).
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Supplementary Figure 2: Model performance of predicting z-score drug sensitiv-
ity. (A-C) distribution of Pearson correlations calculated separately for each perturbed
gene for the three splits: RND (A), CEX (B), and GEX (C). (D-F) Distribution of per
perturbation partial correlations as reported by BD for the three different splits. RND
(D), CEX (E), DEX (F). (G-I) Fraction of perturbations with significant positive par-
tial correlations as detected by BD; mean and 95% confidence interval of three different
RND (G), CEX (H) and DEX (I) splits. Different colors indicate different cell line +
perturbation feature set combinations (legend). The first abbreviation signifies cell fea-
tures, the second perturbation features. Red plus sign indicates significant difference
(p <= 0.05) compared to LR trained on all cell and perturbation features (meaning
improving the algorithm was significant), red asterisk indicates significant difference
(p <= 0.05) compared to the respective method trained on one-hot encoded cell and
perturbation features (meaning improving the data was significant) (see Methods).

22


https://doi.org/10.1101/2023.10.02.560281
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.02.560281; this version posted October 30, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
A _available under aCC-BY 4«0 International licerse

Frrme gmen,

fo - _..;_‘;".

oo e 43 ""-m. PERR
Vo e

14 cer

i

ﬂﬂ’

:: g ok
: |: | :i!'@N !

1

D E F
R ev—— o ,’ .00!"
021 HHIIIN ) ;‘ s Wi

02 My,

|

o
ar e
| e
PRTSSRIN Y T
P Q R
100 v Lo T
. P
. PSR
o . o
I s
T
et
™ el 8 * .
s T u

Supplementary Figure 3: Model performance of predicting IC50 drug sensitivity.
Used evaluation metrics are labeled on the y-axis, used ML model is labeled on the
x-axis, results are grouped based on splits (RND, CEX, GEX, and AEX, columns).
Used cell line and perturbation features pairs are color-coded (legend).
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Supplementary Figure 4: Model performance of predicting z-score drug sensitivity.
Used evaluation metrics are labeled on the y-axis, used ML model is labeled on the
x-axis, results are grouped based on splits (RND, CEX, GEX, and AEX, columns).
Used cell line and perturbation feature pairs are color-coded (legend).
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Split | Metric Rank | Reactome pathway

CEX | correlation 1 PROTEIN FOLDING

CEX | correlation 2 ASSOCIATION OF TRIC CCT WITH TARGET PROTEINS DURING BIOSYNTHE-
SIS

CEX | correlation 3 TP53 REGULATES TRANSCRIPTION OF GENES INVOLVED IN CYTOCHROME
C RELEASE

CEX | correlation 4 TP53 REGULATES TRANSCRIPTION OF CASPASE ACTIVATORS AND CAS-
PASES

CEX | correlation 5 TP53 REGULATES TRANSCRIPTION OF CELL DEATH GENES

CEX | partial correlation | 1 UPTAKE AND FUNCTION OF ANTHRAX TOXINS

CEX | partial correlation | 2 UPTAKE AND ACTIONS OF BACTERIAL TOXINS

CEX | partial correlation | 3 RAF ACTIVATION

CEX | partial correlation | 4 SIGNALING BY MODERATE KINASE ACTIVITY BRAF MUTANTS

CEX | partial correlation | 5 SIGNALING BY BRAF AND RAF FUSIONS

DEX | correlation 1 G1 PHASE

DEX | correlation 2 ONCOGENE INDUCED SENESCENCE

DEX | correlation 3 SENESCENCE ASSOCIATED SECRETORY PHENOTYPE SASP

DEX | correlation 4 OXIDATIVE STRESS INDUCED SENESCENCE

DEX | correlation 5 CYCLIN A:CDK2 ASSOCIATED EVENTS AT S PHASE ENTRY

DEX | partial correlation | 1 SIGNALING BY NON RECEPTOR TYROSINE KINASES

DEX | partial correlation | 2 DOWNREGULATION OF ERBB2:ERBB3 SIGNALING

DEX | partial correlation | 3 GRB7 EVENTS IN ERBB2 SIGNALING

DEX | partial correlation | 4 ERBB2 ACTIVATES PTK6 SIGNALING

DEX | partial correlation | 5 SHC1 EVENTS IN ERBB2 SIGNALING

Supplementary Table 1: Target pathway enrichment for predictable drug sensitivi-
ties. Top 5 enriched pathways using target—correlation vectors as input for enrichment
analysis. Correlations (raw or partial, Metrics column) were calculated between pre-
dicted and observed drug response (for CEX and DEX split, Split column), and aggre-
gated drug-target wise. Reactome pathway enrichment was used with viper algorithm
from decoupleR. The top 5 pathways are shown for each setup.
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